PhD Preliminary Written Exam Fall 2014

Q1 [14pts]

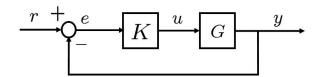


Figure 1: A feedback interconnection

Consider the feedback interconnection shown in Figure 1 where G and K are proper transfer functions. Here it is assumed that a transfer function is of the form $\frac{n(s)}{d(s)}$ where n and d are polynomials in s with no common factors. For the following questions answer if the statement is true or false. If true provide an example and if false provide a proof.

1. [7pts] There exist single-input, single-output proper transfer functions G and K such that $\frac{1}{1+GK}$ and $\frac{G}{1+GK}$ are stable but $\frac{K}{1+GK}$ is not.

Solution: Let $G = \frac{s-1}{(s+1)^2}$ and $K = \frac{s+1}{s-1}$. Here $\frac{1}{1+GK} = \frac{s+1}{s+2}$, $\frac{G}{1+GK} = \frac{s-1}{(s+1)(s+2)}$ are stable but $\frac{K}{1+GK} = \frac{(s+1)^2}{(s-1)(s+2)}$ is not.

2. [7pts] There exist single-input, single-output proper transfer functions G and K such that $\frac{K}{1+GK}$ and $\frac{G}{1+GK}$ are stable but $\frac{1}{1+GK}$ is not.

Solution: Suppose $G = \frac{n_g(s)}{d_g(s)}$ and $K = \frac{n_k(s)}{d_k(s)}$ where n_g , d_g , n_k and d_k are polynomials in s. Then it follows that

• $\frac{1}{1+GK} = \frac{d_g d_k}{n_g n_k + d_g d_k},$ • $\frac{G}{1+GK} = \frac{n_g d_k}{n_g n_k + d_g d_k},$ • $\frac{K}{1+GK} = \frac{n_k d_g}{n_g n_k + d_g d_k},$

 $\frac{1}{1+GK} = \frac{d_g d_k}{n_g n_k + d_g d_k},$ unstable implies that there is a s_0 in the right half plane (rhp) that $(n_g n_k + d_g d_k)(s_0) = 0.$ Given that $\frac{G}{1+GK} = \frac{n_g d_k}{n_g n_k + d_g d_k},$ and $\frac{K}{1+GK} = \frac{n_k d_g}{n_g n_k + d_g d_k},$ are stable it follows that

$$(n_g d_k)(s_0) = (n_k d_g)(s_0) = 0.$$

As $(n_g d_k)(s_0) = 0$ there are two cases

Case 1: Suppose $n_q(s_0) = 0$

Then $d_g(s_0) \neq 0$ and thus from $(n_k d_g)(s_0) = 0$, $n_k(s_0) = 0$. Thus $d_k(s_0) \neq 0$. Thus

$$n_q(s_0)n_k(s_0) + d_q(s_0)d_k(s_0) = d_q(s_0)d_k(s_0) \neq 0$$

which is a contradiction.

Case 2: Suppose $d_k(s_0) = 0$.

Then $n_k(s_0) \neq 0$. Thus from $(n_k d_g)(s_0) = 0$, $d_g(s_0) = 0$. Thus $n_g(s_0) \neq 0$ and thus

$$n_g(s_0)n_k(s_0) + d_g(s_0)d_k(s_0) = n_g(s_0)n_k(s_0) \neq 0$$

which is a contradiction.

Q2 [15pts]

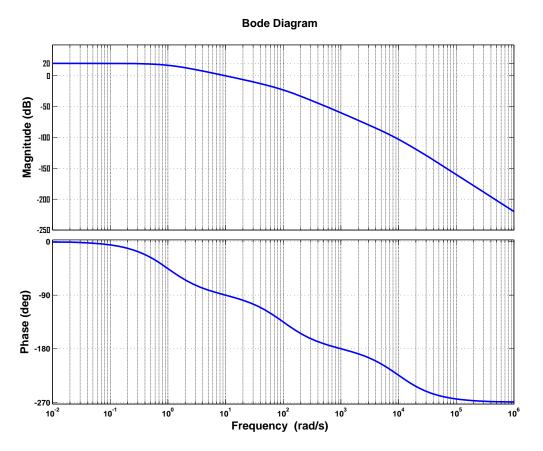
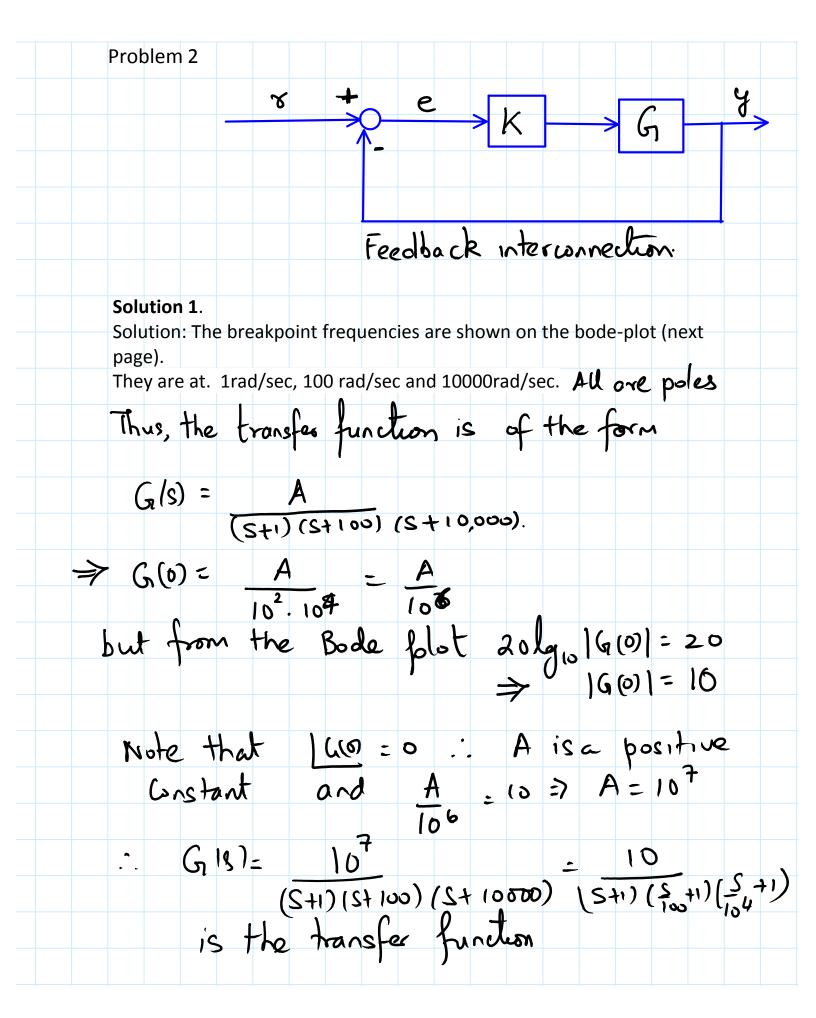
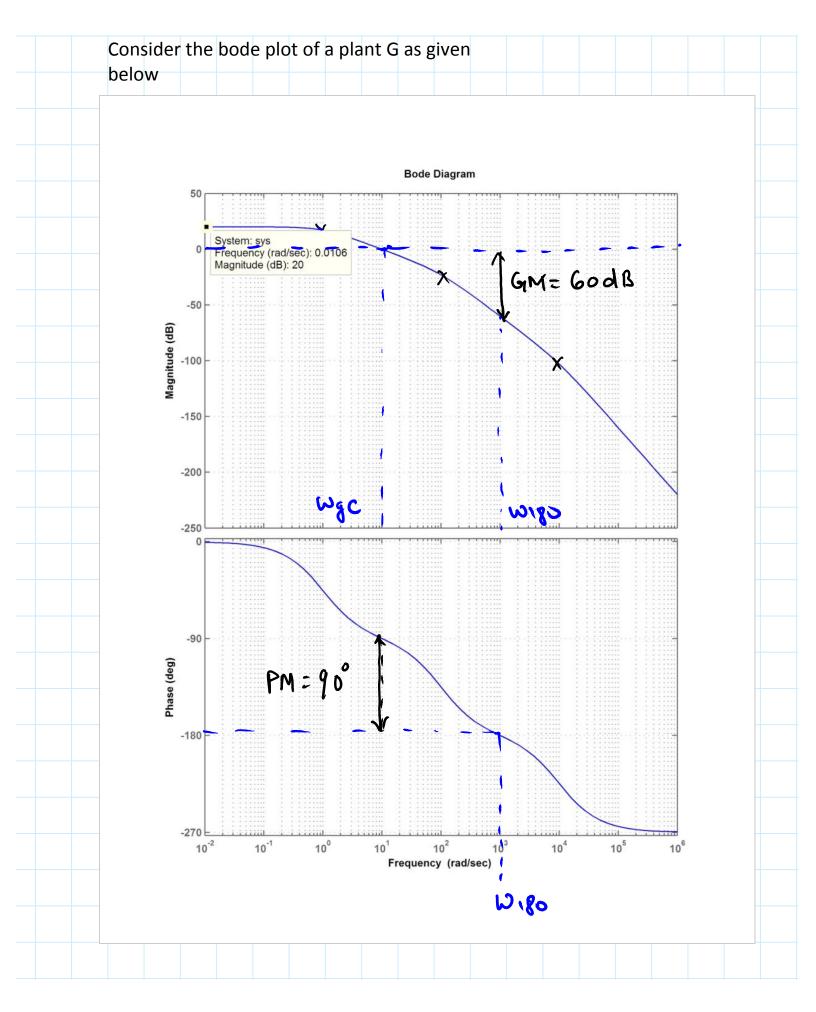


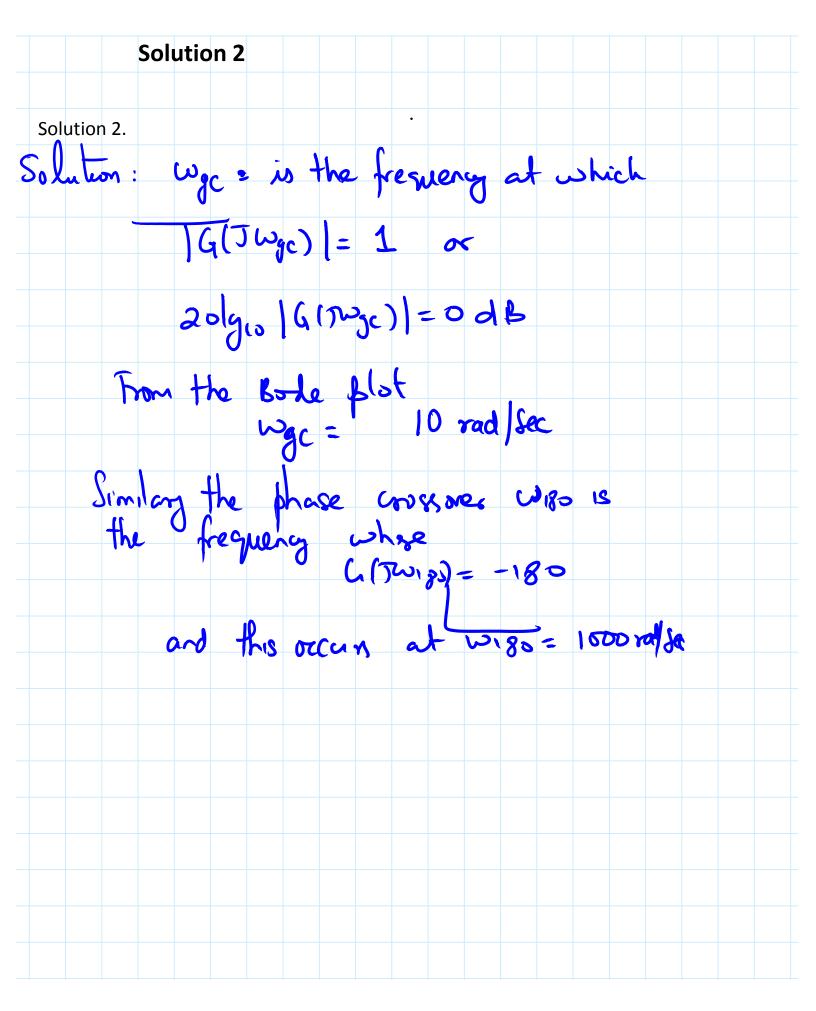
Figure 2: Bode-plot for Problem 2

Consider the bode plot of a minimum-phase transfer function G(s) (the bode plot shows in the magnitude plot $20 \log_{10} |G(j\omega)|$ in db on the Y axis).

- 1. [3pts] Draw the asymptotes on the bode plot. Use the asymptotes to determine the transfer function G(s).
- 2. [3pts] (a)Determine the gain-crossover frequency (ω_{gc}) and the phase-crossover frequency (ω_{180}) . (b) Determine the phase and gain margin.
- 3. [3pts] Suppose the plant G is in a unity negative feedback interconnection with a controller K (see Figure 1). With the controller $K = k_p$ a positive real constant, find the smallest value of k_p such that the interconnection shown is unstable. (Hint: Use the gain margin to obtain the result).
- 4. [3pts] With K = 1 determine the steady state error due to a step input for the interconnection shown. Also, determine the steady state error due to a ramp input.
- 5. [3pts] Design a Proportional Integral (PI) controller, $K = k_p + \frac{k_I}{s}$, to increase the type with specifications (i) the gain crossover frequency has to be 100 rad/sec (ii) the phase margin has to be at least 40 degrees.



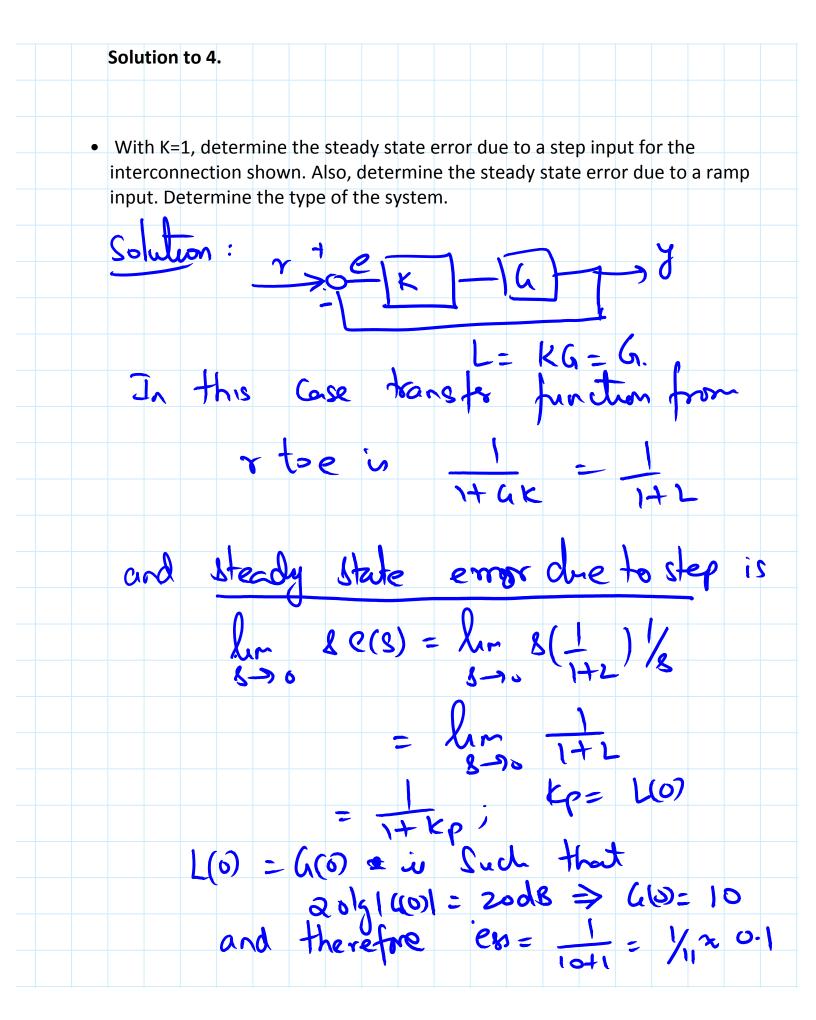


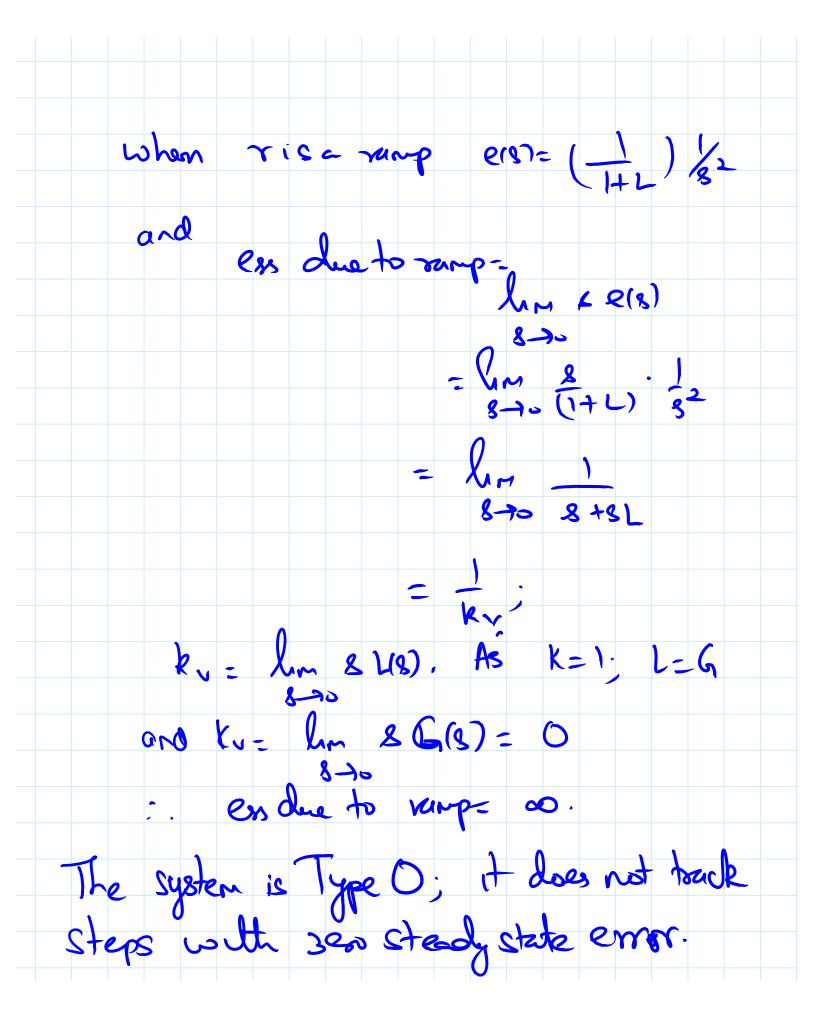


Determine the phase margin and the gain margin Solution: The Grain margin is given by GM = -20 lg10 | G1(JW30) = 60 dBPM = 180+ (Twge) = 180- 90 = 90 dagrees [See Bode plot Earlier].

Solution :

- 3. With the controller $K=k_p$ a positive real constant, find the smallest value of k_p such that the interconnection shown is unstable. Use the gain margin to obtain the result.
 - The value of K_p is given by $20l_{10} k_p = GM$ = 60dB.



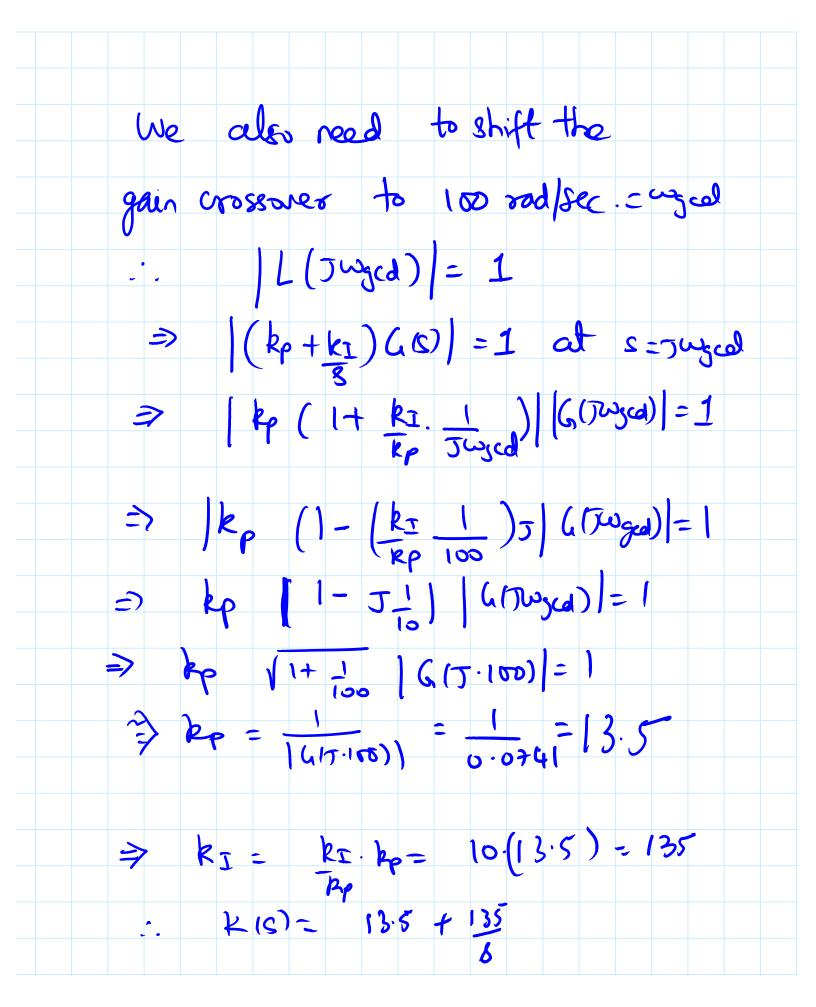


Solution 5.

Design a Proportional Integral (PI) controller, K, to increase the type. Additional specification is that the gain crossover frequency has to 100 rad/sec and to have a PM of 40 degrees.

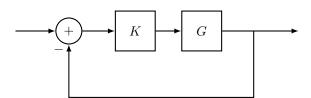
The PI controller is

 $k(s) = k_{p+} k_{I} = k_{I} \left[\frac{k_{p} + 1}{8} \right]$ $= k_{\rm T} \left[\frac{8}{k_{\rm T}} + \frac{1}{3} \right]$ which has a break frequency at kI. G1(8) has a phase of -135° at wgcd=1001/se Thus, PM nove = 180-135 = 45° Safety margin PM desired = 40+5 also thus, conholler K182 cannot decrease the phase any further. choose $\frac{\cos(2)}{10} = \frac{100}{10}$ lets fix = 10.



PhD Preliminary Written Exam Fall 2014 Problem 2 Controls

Q3 [11pts]



Consider the unity gain loop depicted above, with open loop transfer function given by $KG(s) = K \frac{s+1}{s(s-1)}$. Let K = k be a constant gain. Find the range of k that give phase margins of at least 30°.

Solution: The closed-loop poles are given by the roots of the polynomial $f(s) = s^2 + (k-1)s + k$. It follows that the system is stable if and only if k > 1.

To find the phase margin, note that gain cross-over frequency is given by $\omega_{gc} = k$, since

$$|kG(j\omega_{gc})| = k \frac{|j\omega_{gc} + 1|}{|j\omega_{gc}| \cdot |j\omega_{gc} - 1|} = \frac{k}{\omega_{gc}} = 1.$$

Furthermore, the phase of $G(j\omega)$ is given by

$$\angle G(j\omega) = \angle (j\omega+1) - 90^{\circ} - \angle (j\omega-1)$$

= $\angle (j\omega+1) - 90^{\circ} - (180^{\circ} - \angle (j\omega+1))$
= $2 \tan^{-1}(\omega) - 270^{\circ}.$

It follows that the phase margin is given by

$$\varphi_{PM} = 2\tan^{-1}(k) - 90^{\circ}.$$

Thus $\varphi_{PM} \ge 30^\circ$ if and only if $\tan^{-1}(k) \ge (90^\circ + 30^\circ)/2 = 60^\circ$, which holds if and only if $k \ge \sqrt{3}$.